Write comments only when they answer the “Why?”

This is the one and only question that I ask myself when I see comments or when I feel that I need to write some:

Do these comments provide the reason why this code was written?

If not then 99.9% we don’t need them.

“Remove right margin”

I recently came across a block of code that looked like this:

In this example the comment simply describes what the code does. I am pretty sure that everyone can figure that out but only the code’s author knows why we need to remove the margin under those circumstances. I am also sure that in six months (in my case in six days) even the author won’t remember the reason behind this code.

Extract if’s logic

To be fair I do understand the author’s urge to write this comment. Those unavoidable negations, because of the system’s/ui’s APIs, look like they need to be clarified.

Fortunately there is a better way to do that: we extract if’s logic to its own method and name it accordingly:

Extract if’s body

We can go a step further and extract if’s body to its own method too, having the code replacing the comment completely:

Answer the “Why?”

So now what is missing is the reason behind the margin’s removal. A comment that answers the why and completes the reader’s understanding about the code she/he reads.

“I can see what is happening and I know why too!”

A function’s intent should be revealed by its name

And a good way to know if it doesn’t is to read it where it gets used. If, after reading it, you have questions then something is wrong with the name.

A good example is this code that I run into:

if (handleClickItem(customer)) {
    return;
}

When I read this piece of code the very first thing that popped into my head was

How does the click gets handled?!

To figure that out I had to step into the function’s body and start reading it in order to understand what it does and when. It broke my flow and made me change context.

Turned out that this particular function, depending on the customer’s type, opens the contact’s screen and returns true or simply returns false. Having read something like:

if (openContactsScreenWhenCustomerIsCompany(customer)) {
    return;
}

would have been enough for me to simply keep reading and never look back.

Use sealed classes for better domain representation

Lets start with the business logic.

We have a task. A task can be unassigned OR it can be assigned either to a user OR a group.

First implementation: the ugly way

One way to implement this is by putting all the logic in the task:

By default the task is unassigned and if we want an assigned task we provide a user or a group. The or factor is being enforced by a check in the constructor.

This implementation not only relies on nulls to represent the business logic but it also hides the logic from the developer who has to read the code to understand how to create an assigned task.

The null checking comes also up when we want to figure out if and where a task is assigned which is tedious and can easily lead to bugs. As an example lets consider a simple function that prints the task’s assignment state:

Finally two points that we should not neglect are readability and scalability. When using UglyTask if we want our code to be readable, in all cases, we have to pass the arguments by their names (thank you Kotlin 🙂 ):

As far as scalability, consider how many changes we need to do to add a new assigned entity. One to the constructor, one to the init function to enforce our business logic and one in every function that we use the task’s state (see: printAssignment()) which adds even more null checks.

Second implementation: The less ugly way

Another way is by having multiple constructors, each for every valid assignment:

This implementation also puts all the logic in the task but it removes those null checks and makes it easier for the developer to understand it:

With that said, all other drawbacks in readability and scalability remain the same:

Final implementation: the sealed classes way 🙂

The best way to implement the business logic is by using Kotlin’s sealed classes. This way we can represent our business logic straight into our code and also keep our code clean, readable and scalable:

Now, printAssignment() leverages all of Kotlin’s powers, including smart cast, making it easier to the eye:

and the rest of the code does not need any extra help like named arguments:

As for scalability, when we want to add a new way of assignment we just extend AssignedTo and we are good to go.